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Abstract. This paper presents the application of delayed feedback velocity for optimizing the harvested power

in cubic nonlinear damper system. We consider a harvester consisting of a nonlinear single degree of freedom

system (spring-masse-damper) subjected to a base excitation near the primary resonance. Analytical investigation

using the multiple scales method is performed to obtain approximation of the amplitude response. This amplitude

can be used to extract the average power. Results show that for appropriate values of the feedback gain, energy

harvesting is more efficient at resonance compared to the cubic nonlinear damper system without time delay.

1 Introduction

This paper focuses on energy harvesting (EH) performance
extracted from vibrations provided by ambient energy as,
for instance, wind induced vibrations and sailing ships os-
cillations. To increase the frequency range where EH oper-
ates, various models have been suggested [2–4].

In the case where the harvester operates within the lin-
ear regime, the maximum power is generated when the sys-
tem is excited at resonance [5,6]. To overcome this limita-
tion, different alternative approaches have been explored
by introducing nonlinear components into the system. In
some systems [7,8] the nonlinear stiffness is accompanied
by nonlinear damping.

On the other hand, to enhance the energy harvesting
performance a new concept based on delayed feedback
control has been performed. A recent work reported on this
issue considered a delayed van der Pol oscillator with mod-
ulated delay amplitude [4]. It was shown that modulating
the delay amplitude may produce large amplitude quasi-
periodic vibrations in self-excited oscillators.

In the present work, we study the EH in a cubic nonlin-
ear damper system using a delayed feedback velocity. The
harvester consists of a nonlinear single degree of freedom
system (spring-masse-damper) subjected to a base excita-
tion near the primary resonance. This study extends the
results obtained in the case without the time delay reported
in [1].

The rest of the manuscript is organized as follows: In
section 2, we present the mathematical model of the energy
harvesting system. In section 3 we perform the method
of multiple scales to obtain the amplitude-phase response
near the primary resonance. The effect of delay amplitude
on the frequency response and the average power is re-
ported and discussed. Section 4 concludes the work.
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2 The dynamic model and perturbation
analysis

We consider a harvester device consisting of a nonlinear
single degree of freedom system (spring-masse-damper)
subjected to a base excitation near the primary resonance.
The quantities FK , Fdp and Fd are, respectively, the non-
linear restoring force, the nonlinear damping force and the
delay feedback in the velocity. The schematic model of the
system is shown in Fig.1 and the equation of motion can
be written in the form

Fig. 1. Single degree of freedom, base excited, energy harvesting

system.

mz̈(t) + c1ż(t) + c3ż
3
(t) + K1z(t) + K3z3(t) = −mÿ(t)

−αdż(t − T ) (1)

where the overdot represents a derivative with respect to
time t. The variable z̄ represents the relative displacement
of the mass m, c1 and c3 are damping coefficients, k1 and
k3 are, respectively, the linear and nonlinear stiffness of
the restoring force, αd is the delay amplitude, T̄ is the time
delay and y(t) = Y cosΩt is the harmonic base motion.
The relative normal displacement is given by

z(t) = x(t) − y(t) (2)
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To obtain a dimensionless form of Eq. (1), we introduce
the following nondimensional parameters: ξ1 =

c1

2mω0
, ξ3 =

c3ω0Y2

m , γ = K3Y2

mω2
0

, λd =
αd

mω0
, ω0 =

√
K1

m , T = ω0T , τ = ω0t,

ω = Ω
ω0

, z = z
Y , α1 = 2ξ1, α2 = ξ2. The dimensionless

equation of motion takes the form

z̈ + α1ż + α2ż3 + z + γz3 = ω2 cos(ωτ) − λdż(τ − T ) (3)

To analyze the effect of the time-delayed feedback on the
frequency response near the primary resonance, we use the
method of multiples scales [10,11]. To this end, we express
the resonance condition by introducing a detuning param-
eter σ according to Ω2

0 = ω
2 + εσ and Ω2

0 = 1. Introducing
a small parameter ε, the equation of motion reads

z̈ + ω2z = ε
(
− σz − α1ż − α2ż3 + ω2 cos(ωτ) −

λdż(τ − T )
)
− ε2γz3 (4)

To ultimately solve Eq. (4), steady-state solution are ex-
panded as

z(τ) = z0(τ0, τ1, τ2) + εz1(τ0, τ1, τ2) + ε2z2(τ0, τ1, τ2)

+O(ε3) (5)

where T0 = τ, T1 = ετ and T2 = ε2τ. In terms of the
variables Ti(i = 0, 1, 2), the time derivatives become d

dτ =

D0 + εD1 + ε
2D2 +O(ε3) and d2

dτ2 = D2
0 +2εD0D1 + ε

2D2
1 +

2ε2D0D2 + O(ε3), where Di =
∂
∂Ti

. Substituting (5) into

(4), equating terms of different order of ε, resolving and
eliminating the secular terms, we obtain the following slow
flow modulation equation of the amplitude and the phase:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dr
dτ
= h sin θ + Ar +Cr3

r
dθ
dτ
= h cos θ + Br + Dr3

(6)

Equilibria of this slow flow, corresponding to periodic so-
lutions of Eq. (4), are determined by setting dr

dt =
dθ
dt = 0.

This leads to the amplitude-frequency response equation

(D2 +C2)r6 + 2(AC + BD)r4 + (A2 + B2)r2 −
h2 = 0 (7)

where A = α1

2
− λd

2
cos φ, B = σ

2ω
+

λd
2

sin φ, C = 3α2ω
2

8
,

D = 3γ
8ω

, h = −ω
2

, φ = ωT .
The average power is obtained by averaging over one

period of the excitation. This leads to

Pgen =
ω

2π

∫ 2π
ω

0

(α1ż + α3ż3)żdτ (8)

Using Eq. (8), we obtain the generated average power

Pav
gen =

α1ω
2r2

2
+

3α3ω
4r4

8
(9)

The power required for the active control action is given
by

Pact =
ω

2π

∫ 2π
ω

0

λdż(t − τ)żdτ (10)

Then, the consumed average power is given by

Pav
act =

λdω
2r2

2
cos φ (11)

where ψ = ωτ + θ and φ = ωT .
The harvested (or net) average power defined as the differ-
ence of generated and consumed average powers reads

Pav
harv = Pav

gen − Pav
act (12)

3 Main results

The influence of different system parameters on the dy-
namic response and the maximum average output powers
is examined. We fix the damping parameters α1 = 0.25,
α2 = 0.025 and γ = 0.45.
The frequency-response curve, as expressed by Eq. (7), is
depicted in Fig. 2 for increasing delay amplitude λd. The
solid lines correspond to stable branches while the dashed
line corresponds to the unstable one. The plots indicate that
as the delay amplitude is increased the maximum deflec-
tion displays an increasing in the hardening nonlinear re-
sponse and shift toward higher frequencies.
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Fig. 2. Amplitude-frequency response versus ω for different val-

ues of the delay amplitude λd.

Figure. 3 illustrates the variation of the amplitude re-
sponse versus the delay amplitude λd for a fixed values of
the time delay T and the excitation frequency ω. Analyti-
cal approximations (solid lines) are compared to numerical
simulations (circles). It can be seen that increasing the am-
plitude λd causes an increase in the amplitude response.
Figure. 4 represents the generated average power response
versus the delay amplitude λd for a fixed value of T and
ω. The figure shows an increase of the output power by
increasing λd.

Figure. 5 depicts the variation of the average powers
quantities with respect to the delay amplitude λd for a given
values of ω and T . It is observed that the harvested average
power increases in a certain range of λd.

4 Conclusions

The application of delayed feedback velocity for optimiz-
ing the harvested power in cubic nonlinear damper system
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Fig. 3. Amplitude response versus λd for T = 1 and ω = 2.5;

Solid lines: analytical approximation; circle: numerical simula-

tion.
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Fig. 4. Generated average power versus λd for T = 1 andω = 2.5;

Solid lines: analytical approximation; circle: numerical simula-

tion.
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Fig. 5. Average powers quantities versus the delay amplitude λd

for T = 1 and ω = 2.5.

is presented. The harvester device consists of a nonlinear
single degree of freedom system (spring-masse-damper)
subjected to a base excitation is considered near the pri-
mary resonance. Analytical investigation using the multi-
ple scales method was performed to obtain approximation
of the amplitude response. This amplitude is used to obtain
the evolution of the extract average power as the delayed
feedback gain is increased. Results shown that in the cu-
bic nonlinear damper system, time delay introduced in the
velocity enhance significantly the performance of the net
energy harvesting.
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